Collaboratively Enhanced Consistency Checking in a
Cloud-based Engineering Environment

Michael Alexander Trols
Johannes Kepler University
Linz, Austria
michael.troels @jku.at

Atif Mashkoor
Software Competence Center
Hagenberg GmbH & Johannes
Kepler University

Alexander Egyed
Johannes Kepler University
Linz, Austria
alexander.egyed @jku.at

Linz, Austria
atif. mashkoor @ {scch\jku}.at

ABSTRACT

Software systems engineering involves many engineers, often
from different engineering disciplines. Efficient collabora-
tion among these engineers is a vital necessity. Tool support
for such collaboration is often lacking, especially with re-
gards to consistency between different engineering artifacts
(e.g., between model and code or requirements and specifi-
cations). Current collaboration tools, such as version control
systems, are not able to address these cross-artifact consistency
concerns. The consequence is unnecessarily complex consis-
tency maintenance during engineering. This paper explores
consistent handling of engineering artifacts during collabo-
rative engineering. This work presumes that all engineers
collaborate using a joint, cloud-based engineering environ-
ment and engineering artifacts are continuously synchronized
with this environment. The artifacts can be read and modified
by both engineers and analysis mechanisms such as a consis-
tency checker. The paper enumerates different consistency
checking scenarios that arise during such collaboration.

CCS Concepts
*Software and its engineering — Collaboration in soft-
ware development;

Author Keywords
Collaboration; Consistency Checking; Cloud Engineering;
Linking

1 INTRODUCTION

Today’s engineering landscape is filled with a multitude of
widely used tools, meeting the diverse needs of engineers. In
software engineering alone, we have tools for implementation,
architecture & design, requirements engineering, testing and
more. Collaboration among engineers is essential, yet the
growing number and complexity of engineering artifacts cap-
tured through their tools makes this increasingly difficult. A

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EICS 19 June 18-21, 2019, Valencia, Spain

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6745-5/19/06. .. $15.00

DOI: https://doi.org/10.1145/3319499.3328232

single engineer is unlikely to be aware of, let alone understand
or interpret, all artifacts [1]. This is in part caused by today’s
focus of collaborative tools, on single types of engineering
artifacts. For example, version control systems such as Sub-
version! or Git?, were originally developed for sharing code.
It is technically possible to store different engineering artifacts
in such systems as well, but the text-based nature of their
mechanisms hinders a serious, fine-granular integration. This
shortcoming results in a lack of information concerning arti-
fact changes and their respective implications, meaning that
the version control system may document changes, but not
their intricate details (e.g., one could infer that a design docu-
ment was altered but not which diagram or property within).
This makes the analysis of changes rather cumbersome.

One major problem in this regard is, that inconsistencies -
which are bound to arise, due to the heavily interdependent
nature of engineering artifacts - become very hard to detect,
before the integration of an engineer’s work with the work of
others. There have been various attempts at tackling consis-
tency checking in general (e.g., [3, 4, 6, 7, 8, 11]), but the issue
described beforehand makes it clear to us, that a mechanism
providing more immediate feedback is required. There is a
need for consistency checking enhanced by a collaborative
environment and while some approaches have gone into that
direction (e.g., [5, 9]) they mostly consider only homogenous
engineering artifacts or require costly merging operations.

This paper presents a collaboratively enhanced consistency
checking mechanism to better support the collaborative efforts
of engineers. The approach is embedded in a cloud-based
engineering environment, focusing on the integration of tools
and synchronizing captured artifacts, to enable comprehen-
sive reasoning, while engineers continue to use the tools they
always have.

The rest of this paper is structured as follows: In Section 2,
we present the DesignSpace engineering cloud [2] as the ar-
chitectural foundation of our work. Realized on this platform,
we present our approach of a collaboratively enhanced consis-
tency checker in Section 3. We evaluate this work in Section 4
presenting the results of an experiment and two case studies.

! Apache Subversion: https://subversion.apache.org/
2Git: https://git-scm.com

https://doi.org/10.1145/3319499.3328232

The paper is concluded with an outlook towards the future
work in Section 5.

2 THE DESIGNSPACE ENGINEERING CLOUD

The DesignSpace is a cloud-based collaboration platform. It
is organized into artifact storage and collaboration services.
Artifact storage provides a central and uniform place where
engineering artifacts are stored. These artifacts typically origi-
nate from the various tools that engineers use (e.g., program-
ming tools, modeling tools, requirements tools). Through tool
adapters, the artifacts within tools are continuously synchro-
nized with the DesignSpace. Engineers continue to use the
tools they already know.

Collaboration services augment and analyze the artifacts in
the cloud to assist engineers during their collaboration. By
immediately reacting towards changes in the artifact storage,
services provide live feedback and corresponding guidance to
engineers. Collaboratively enhanced consistency checking is
one such service. It provides the means to reason over artifacts
stored in the cloud and is able to provide customized consis-
tency feedback on arbitrary types of artifacts. This effectively
means that consistency rules can be formulated beyond the
boundaries of a single tool and compare artifacts from different
tools with each other (e.g., model and code). The basic archi-
tecture of the DesignSpace is illustrated in Figure 1. In the
following we discuss the basic aspects of this cloud environ-
ment that build the architectural foundation of our presented
consistency checking approach.

. DesignSpace
Artifact Storage Engineering Cloud
‘ Collaboration
Shared Public Artifacts Services
Private Private Private ‘}3/
Tool Tool Tool ys
Artifacts - Artifacts —— Artifacts Analysis &
‘ Modification ‘
r
I
I
I
[

Figure 1. Illustration of multiple tools sharing artifacts on the De-
signSpace and Services providing feedback

2.1 Uniform Data Representation

The artifact storage of the DesignSpace provides a uniform rep-
resentation for arbitrary engineering artifacts. It ensures that
engineers have access to all engineering artifacts and cloud
services can parse them regardless of their origin. For this
purpose, tool adapters translate the artifacts as they appear in
the tools to a uniform data representation. This representa-
tion is a mapping between the properties of a data entity and
their respective value. For example, a spreadsheet could be
translated into the uniform data representation with properties
for all relevant fields. The values mapped to these properties

would represent the content of the respective fields. Likewise
source code could be parsed such that classes, methods or
fields become separate cloud artifacts where their properties
reflect field or method names. The mapped values could be
method bodies, return types, constant values or similar. The
granularity of the artifact translation is defined in the tool
adapters.

2.2 Live Feedback

As the engineering cloud is continously updated with the in-
cremental data, every change triggers an event that can be
forwarded through the cloud. Subsequently, these events can
be caught by cloud services, e.g., to trigger mechanisms, or
sent to tool adapters, which can translate them into user feed-
back, e.g., screen warnings.

2.3 Artifact Typing

Artifacts within the DesignSpace must adhere to a defined
structure. We refer to these structures as types. Types can be
defined by tool adapters, specifying certain properties as well
as the primitive data type and cardinality of their values. The
users can then easily instantiate the types and fill their values
via a method provided by the DesignSpace.

2.4 Linking

Since artifacts are uniquely identifiable within the cloud envi-
ronment, they can also easily reference each other, by simply
storing each other’s ID. The consistency checking service can
utilize these links to reason beyond the boundaries of a single
engineering artifact’s domain.

2.5 Private Work Areas

Before being accessible to all engineers in the public repos-
itory (PR), artifact changes are synchronized with a private
work area (PWA). This is an isolated view on the engineer-
ing artifacts the engineers are currently working on in their
tools - respectively the delta of these artifacts in relation to
their publicly available version. Assume engineers wish to
make changes to an artifact stored within the PR. They would
first checkout the artifact to their tool through the tool adapter.
There they would make changes to the artifact’s properties.
These changes would then be stored in the PWA. Once the en-
gineers decide to publish the changes, they are incrementally
added to the PR.

2.6 Collaboration Services

As artifacts become available in the cloud, they can be ana-
lyzed by services. These services may modify artifacts on their
own (e.g., to repair an error) or provide structured feedback to
engineers (e.g., to warn about conflicts).

3 CONSISTENCY CHECKING

Consistency checking in general, is a technique to validate
whether engineering artifacts adhere to a certain standard. This
standard is normally regarded in isolation, i.e., they only mat-
ter for a certain type of artifacts. For example, Java code
adheres to certain rules defined through the Java metamodel,
certain IDE’s evaluate written code against internal standards
and some UML environments make sure that models stay

consistent with each other (e.g., by making sure lifelines in a
sequence diagram correspond to a class in a class diagram). In
broad terms, consistency checking differentiates between local
and global consistency. The former describes the most com-
mon kind of consistency checking, as it only concerns itself
with artifacts of a certain type adhering to internal standards
(as described above). The latter, however, concerns itself with
the consistency of several types of artifacts in relation to each
other. Equivalently, one can also speak of intra- and inter-
model consistency [10]. While systems for the former kind
are rather frequent, the latter is rarely explored, mostly due
to the lacking tool support. What is required for global con-
sistency checking is a common ground on which engineering
artifacts can be compared. Such a common ground is normally
achieved through such activities as model merging. This is
mostly connected with great efforts and thus rarely pursued.
The DesignSpace, on the other hand, already provides a uni-
form data representation over which a consistency checker can
reason. This is a major advantage since it allows us to coun-
tercheck changes on one typed artifact against values stored
on a different type, e.g., one could synchronize both code and
design documents with the DesignSpace. The consistency
checker can then compare concrete related values and warn
engineers if there are discrepancies.

3.1 Basic Architecture & Runtime Functionality

Since we covered both the technical pre-requisites, as well as
potential benefits of a consistency checker within a collabora-
tive cloud environment, we now discuss the technical details
of its implementation and execution.

3.1.1 Data Structure

The consistency checker uses the uniform data representation
not only for reasoning, but also as a data structure for inter-
nal information. Technically, this gives us the possibility to
evaluate the consistency checking data for inconsistencies,
but more importantly it grants a tight integration with the
rest of the collaboration environment. Therefore, changes to
its data structure are adapted incrementally and the resulting
events can be forwarded through the cloud, for example, to
trigger mechanisms of other services. Likewise they can be
forwarded to users, e.g., when a consistency rule is broken.
The consistency checker requires two major data structures:

e Consistency Rule Definition Artifacts: These artifacts define
rules as a simple OCL3-like strings. They, furthermore,
define a context for the rule’s evaluation. This context is an
artifact type for which the rule has to hold. Within the rule
the context is refered to as “self”.

e Consistency Rule Instance Artifacts: These artifacts are in-
stanced for each artifact of a certain type referenced in a
consistency rule definition. They store a context element
(the concrete artifact instance of the context type) as well as
a scope, which represents each artifact that is traversed by
evaluating the consistency rule for the respective context el-
ement. Furthermore, the rule instances also hold the results
of their individual rule evaluation.

30CL: https://www.omg.org/spec/OCL/About-OCL/

As an illustrative example, consider the rule definition stated in
Listing 1. Init, the declared context is a JavaClass, respectively
the artifact type corresponding to the name JavaClass. The
rule can be read like a simple object access in object oriented
programming languages, i.e., from the context (self) the rule
evaluation navigates through a reference “UML” to the name
of the referenced UML artifact and compares it to the name
field found in the context artifact. The consistency checker will
instantiate a Consistency Rule Instance Artifact for each Java
class artifact instance and evaluate the said instance according
to the defined rule.

3.1.2 Rule Evaluation

In the following we will discuss a typical rule evaluation for
the proposed consistency checking mechanism. As aforemen-
tioned, the consistency checker will instantiate Consistency
Rule Instance Artifacts according to a respective definition.
Each such instance references a certain context element for
which the defined rule is evaluated. Such an evaluation hap-
pens in various steps:

o Triggering the consistency checker: The consistency check-
ing mechanism can be triggered through various ways. It
can either be started manually, by user input, or automati-
cally, e.g., by catching change events on scope elements.

o Retrieving the rule: Once the consistency checker is ac-
tive, it must first retrieve the rule corresponding with an
artifact. For this the artifact triggering the mechanism must
first be identified within a consistency rule instance artifact.
It does not matter whether it is the context element or a
scope element. Both kinds of changes can have an impact
on the consistency state of a project. Once the artifact is
found within a rule instance the referenced rule definition is
retrieved.

e Traversing the artifact structure: Once the rule is retrieved,
it can be executed. The rule itself describes a path from
a context element to property values, which are then com-
pared according to whatever operation is defined within the
rule.

o Write back results: Once the rule is evaluated, the results are
written back onto the Consistency Rule Instance Artifact.

e Feedback: Results can be forwarded to tool adapters and
other services. The interpretation of the results (e.g., trig-
gering screen messages or service mechanisms) is up to
them.

During the evaluation process, the consistency checker also
updates the respective consistency rule instances scope. Every
artifact the consistency checker passes during the traversal of
the artifact structure is stored in the scope for future evalua-
tions.

Context : Java :: Class
Rule : self .UML .name == self.name

Listing 1. A simple consistency rule comparing names between a Java-
Class artifact and the corresponding UML diagram.

3.2 Collaborative Enhancement

With the deployment on the DesignSpace and the utilization
of its architecture, the consistency checker can be enhanced
through several collaborative features. In our approach, we
covered the following:

o Full Activity Awareness
e Multi-Tool Consistency Checking

e Team-Driven Error Handling

In the following, we will discuss how individual features of
the DesignSpace were exploited to achieve these features.

3.2.1 Full Activity Awareness

A way to collaboratively enhance consistency checking is to
make the corresponding mechanism aware of each engineer’s
work. For our approach, three forms of awareness were estab-
lished by deploying the consistency checker as a collaborative
service:

1) Artifact Awareness: The most basic capability of an engi-
neering cloud is to enable awareness of each others engineer-
ing artifacts. The lack of awareness of another engineers’ work
may lead to conflicts and unnecessary rework. This hinders
collaboration as much as it hinders collaboratively enhanced
consistency checking, which can in turn help us to reduce
conflicts between engineering artifacts. Through the full in-
tegration of the consistency checker with the DesignSpace’s
uniform data representation the mechanism works natively
on the cloud’s data structure. Artifact awareness is given by
providing the service with full access to the artifact storage.
Contrary to the regular users the service does not only over-
look a single PWA, but all work areas, including the PR. This
also grants the consistency checker the possibility to retrieve a
full representation of an engineering artifact within the context
of each engineer’s individual PWA. Each such context can
be seen as an individual view of the consistency checker on
engineering data. Such a view can be defined as follows:

Vee(A) =V(A(PnUPy))
Py ={Vp | p € PWA}
P,={Vp|p€EPR A p¢&PWA}

Where V. is the view of the consistency checker on an artifact
A. This is equivalent to the view on two property sets Py, and
Py, both in union making up the artifact A. Py, is a property set
of all properties that have been changed within a PWA and are
thus only available there in isolation, wheras Py, is a property
set of all properties residing only within the PR. Since they
have not been changed they do not reside within the PWA. In
short: In the context of full artifact awareness, the consistency
checker can view an artifact comprised of its public version
complemented by the individual changes of the engineers.

2) Change Awareness: An engineering cloud can provide
change awareness so that engineers and collaboration services
see changes instantly. This is especially useful when the en-
gineers’ works have strong, immediate implications on each
other. In such a scenario immediate consistency checking -
triggered by change events - can be of high value. For this

to happen the collaboration service in our approach directly
listens to change events fired by both the PWAs and the PR.
Catching these change events triggers the consistency checker
in one of two possible modes:

o Private Change Evaluation: These are triggered by change
events fired in a PWA. The evaluated consistency infor-
mation is written into the private version of the respective
Consistency Rule Instance. The newly computed results are
only visible to the engineer using the PWA.

e Public Change Evaluation: These are triggered by change
events fired in the PR. Since consistency information is also
stored privately - and subsequently committed to the PR -
change events triggered by users publishing their private
changes are ignored. Instead, this form of rule evaluation
can only happen if a service changes the PR directly. The
newly computed results are visible to all users and services.

Both modes can perform local or global consistency checks,
since the extent of a check is dependent on the nature of the
written consistency rule. If a consistency rule contains global
elements, like a link towards different engineering artifacts
not available within the PWA, the consistency checker will
automatically retrieve the publicly available version of the
corresponding artifacts and integrate it into the rule evaluation.

3) Error Awareness: Concluding it’s rule evaluation process,
the consistency checker uses the direct connection between
PWAs and tools to send the consistency feedback to all listen-
ing tool adapters as illustrated in Figure 1. The tool adapters
can then visualize this feedback in a customized manner. In
this context it is important to note that anybody can register
for the error feedback of any PWA. This allows us to create a
full error awareness for engineers, which can also be utilized
collaboratively. For example, an electrical engineer and a
software engineer could register to receive the consistency in-
formation of their respective changes. If, however, they choose
to work as a group/team then they could choose to get feed-
back with regard to the union of the group’s changes, while
still working in isolation on their own engineering artifacts.

3.2.2 Multi-Tool Consistency Checking

A collaborative engineering cloud, such as the DesignSpace,
gives its users the ability to augment tool knowledge with
additional information, which tools are normally not able to
capture themselves. To our understanding, one of the most
crucial bits of additional information is the relationship be-
tween artifacts from different tools. Such relationships can
be established in the DesignSpace through artifact links as
aforementioned in Section 2.4. These links can be extensively
utilized by a collaboratively enhanced consistency checker,
especially with regards to multi-tool, respectively global con-
sistency. Since links are defined through regular properties on
an artifact, it is sufficient to refer to such a property in order to
navigate from one artifact to another during the rule-evaluation
process . Consider again the consistency rule given in Listing
1. In it, we refer to a property called “UML”. In the De-
signSpace this property can be defined as a reference towards
a corresponding UML artifact. During the rule evaluation
process the consistency checker will automatically navigate to

the referenced artifact and continue the evaluation from there.
Subsequently, our approach can rely on such links to define
conditions beyond the boundary of a single artifact or even the
engineering domain. Additionally, it should be noted, that the
consistency checker can also be used to validate such links,
e.g., by making sure the properties are not empty. If, alterna-
tively, links are established through separate artifacts featuring
both a source and target property, the consistency checker can -
given proper rules have been established beforehand - evaluate
whether these artifacts have been created correctly.

3.2.3 Team-Driven Error Handling

Concurrent modification of engineering artifacts leads to er-
rors - errors that are increasingly expensive to fix the longer
they stay undetected. A collaboratively enhanced consistency
checker can support cross workstation/tool/discipline error
feedback on a scale that is otherwise not possible today. Es-
pecially with the help of change events being fired in both
PWAs as well as the PR, the consistency checker can analyze
arising inconsistency immediately and send the corresponding
feedback to engineers. With this, fixing errors can become
a collaborative effort, as the inconsistency feedback contains
exact information about broken consistency rules, affected
artifacts and the workspaces that issued changes leading to
inconsistencies. The latter bit of information is especially
important, since it gives the engineers indications on who to
communicate with when fixing a problem. As an additional
note: Enforcing consistency rules can also be used to prevent
errors in the first place, e.g., by pre-checking changes and
rejecting them if they violate any rule. However, since a tem-
porarily inconsistent state of the isolated work is normally
tolerated, this form of rule enforcement might be regarded as
too restrictive by the engineers.

4 EVALUATION

The collaborative engineering cloud as well as the proposed
collaboratively enhanced consistency checking mechanism
have been evaluated via a prototype implementation in the
context of an industrial experiment and two major case studies.
In this section, we discuss them in more detail.

4.1 Prototype Implementations

The DesignSpace approach is different from much of its re-
lated work mentioned in Section 1, because it does not em-
phasize on certain collaboration styles but is meant to provide
flexibility in collaboration. The goal is a freely definable and
changeable collaboration approach where engineers can join
groups, change artifact awareness, or engage arbitrary pro-
cesses. The current implementation supports a range of tool
adapters, such as Java Eclipse4, IBM Rational Software Archi-
tect® (for UML), Microsoft Excel (for calculations), Creo® (for
CAD Drawings), Eplan Electric P8’ (for electrical layouts),
and others. These tools demonstrate convincingly that it is
possible to represent arbitrary tool artifacts in a cloud. The

4Eclipse IDE: https://www.eclipse.org/

SIBM RSA: https://www.ibm.com/developerworks/ downloads/r/ar-
chitect/index.html

6Creo: https://www.ptc.com/de/products/cad/creo
7EPlan: https://www.eplanusa.com/us/2/

current implementation of the consistency checker makes ex-
tensive use of linked artifacts from different tools and as such
augmented links with error rules to detect inconsistencies on
the fly.

4.2 Experiments & Case Studies

Our collaboratively enhanced consistency checking approach
has been validated on the basis of an experiment as well as
two case studies, which are discussed in the following.

4.2.1 Industrial Experiment

Our consistency checking approach has been beneficially uti-
lized in an extensive industrial experiment with Van Hoecke
Automation®. There, consistency has been secured between
electrical models as well as their software controllers. The cor-
responding artifacts were made available in the DesignSpace
and altered in parallel, while continously being counter-
checked against established consistency rules. Errors, re-
specitvely arising inconsistencies, were then fed back to the en-
gineers, who worked with tool adapters for EPlan and Eclipse.
With this the application of our approach could achieve full
activity awareness. Multi-Tool consistency checking was es-
tablished through various types of links, which were eval-
uated during the experimentas well. Artifacts representing
spreadsheet cells, code and EPlan model elements have been
linked manually through a separate tool. These links were
typed artifacts and were not only used by the consistency
checker, but also established traceability between engineering
artifacts. This confirms not only the feasibility but adds to
the usefulness of our approach, as traceability is an additional
important issue covered through the DesignSpace. Both the
detection of conflicting changes and also the prevention of
errors has been done within the experiment. Feedback about
inconsistencies was provided instantly after the consistency
checker analyzed changes and evaluated them as erroneous.
Alternatively, consistency feedback could be requested by the
engineers manually.

4.2.2 FMTC Case Study

Full activity awareness was further evaluated during a case
study with the Flander’s Mechatronics Technology Center
(FMTC?). In this case study, EPlan Electric P8 drawings were
provided by a third-party company. These drawings had to
be kept consistent with their respective code implementations
according to user-defined, domain-specific consistency rules.
Through customly implemented tool adapters, the respective
artifacts were integrated in the DesignSpace, giving validation
to our approach with regards to its multi-tool aspect. Links
between artifacts were created with a custom DesignSpace
tool. After issuing a series of changes, instant consistency
feedback was provided to engineers. Detected discrepancies
between the drawings and the code were reported, evaluating
the notion of full activity awareness as well as team-driven
error handling.

4.2.3 ACCM Case Study
To evaluate our approach within a different engineering do-
main, a case study was conducted with the Austrian Center of

8Van Hoecke Automation: https://www.vha.be/
9EMTC: https://www.flandersmake.be/en

Competence in Mechatronics (ACCM/LCM'?). There, the me-
chanical calculation for a robot arm was shared and analyzed
on the DesignSpace. Full activity awareness was given with
particular focus on error awareness, as engineers were notified
about changes that have been counter-checked against estab-
lished consistency rules. With the help of the notifications
problem solutions concerning arising inconsistencies could
be worked out in a team-driven way. The consistency rules
required the established links between artifacts from different
tools. In particular, these links involved relations between
UML models, CAD drawings and spreadsheet artifacts, vali-
dating our approach with regards to its multi-tool capabilities.

5 CONCLUSION & FUTURE WORK

Software systems engineering is a highly complex activity that
integrates knowledge from a variety of disciplines. Engineers
attempt to manage and break down this complexity by focusing
on what they can do individually in the context of tools they are
using. However, this results in knowledge fragmented across
many tools and an increased risk of inconsistencies. This
paper has shown that a collaboratively enhancend consistency
checker can rectify this issue. Our proposed mechanism both
contributes to and benefits from a cloud-based engineering
platform, that integrates engineering artifacts from different
disciplines. We discussed various aspects of collaboration,
that are affected positively by our approach, most importantly
activity awareness, multi-tool consistency checking and team-
driven error handling. With regards to the future work, we
would like to extend the consistency checker’s capabilities
under particular consideration of the following scenarios:

Selected Group Awareness: Sometimes consistency informa-
tion of a specific group context (e.g., a certain team within
a project) can be of interest. While engineers might be re-
luctant to counter-check the unfinished work with publicly
available engineering artifacts, they are more likely willing to
check work-in-progress against selected sub-results of their
own workgroup. This can be achieved by changing the context
of consistency checks to a selected set of artifacts. The results
can help engineers to integrate their own work with the rest of
the team.

Change and Reuse The systematic linking of engineering
knowledge also benefits change and reuse. Imagine a project
about a robotic system which has similarities with past solu-
tions - for example, parts of a robot arm. With all engineering
knowledge available in the cloud and with all its artifacts
linked, engineers could now extract the said robot arm’s speci-
fications, use cases or associated code. Consistency checking
can simplify this process, since reused engineering artifacts
must still adhere to the same or similar consistency rules.

6 ACKNOWLEDGEMENT

This work is supported by the Austrian Science Fund (FWF),
grant no. P 31989-N31, the JKU Linz Institute of Technol-
ogy (LIT), the state of Upper Austria, grant no. LIT-2016-2-
SEE-019, Pro2Future, a COMET K1-Centre of the Austrian
Research Promotion Agency (FFG), grant no. 854184 and the
Software Competence Center Hagenberg GmbH.

10 ACCM/LCM: https://www.lcm.at/unternehmen/kompetenzzentrum/

REFERENCES

1.

10.

11.

Andreas Demuth, Roland Kretschmer, Alexander Egyed,
and Davy Maes. 2016. Introducing Traceability and
Consistency Checking for Change Impact Analysis
across Engineering Tools in an Automation Solution
Company: An Experience Report. In Software
Maintenance and Evolution (ICSME), 2016 IEEE
International Conference on. IEEE, 529-538.

. Andreas Demuth, Markus Riedl-Ehrenleitner, Alexander

Nohrer, Peter Hehenberger, Klaus Zeman, and Alexander
Egyed. 2015. DesignSpace: an infrastructure for
multi-user/multi-tool engineering. In Proceedings of the
30th Annual ACM Symposium on Applied Computing.
ACM, 1486-1491.

. Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter,

Jeff Kramer, and Bashar Nuseibeh. 1994. Inconsistency
handling in multiperspective specifications. [EEE
Transactions on Software Engineering 20, 8 (1994),
569-578.

. Pascal Fradet, Daniel Le Métayer, and Micha&l Périn.

1999. Consistency checking for multiple view software
architectures. In Software Engineering - ESEC/FSE’99.
Springer, 410-428.

. Harald K6nig and Zinovy Diskin. 2016. Advanced local

checking of global consistency in heterogeneous
multimodeling. In European Conference on Modelling
Foundations and Applications. Springer, 19-35.

. Christian Nentwich, Licia Capra, Wolfgang Emmerich,

and Anthony Finkelsteiin. 2002. xlinkit: A consistency
checking and smart link generation service. ACM
Transactions on Internet Technology (TOIT) 2, 2 (2002),
151-185.

. Steven P Reiss. 2006. Incremental maintenance of

software artifacts. IEEE Transactions on Software
Engineering 32, 9 (2006), 682-697.

. Markus Riedl-Ehrenleitner, Andreas Demuth, and

Alexander Egyed. 2014. Towards model-and-code
consistency checking. In 2014 IEEE 38th Annual
Computer Software and Applications Conference. IEEE,
85-90.

. Mehrdad Sabetzadeh, Shiva Nejati, Steve Easterbrook,

and Marsha Chechik. 2008. Global consistency checking
of distributed models with TReMer+. In 2008 ACM/IEEE
30th International Conference on Software Engineering.
IEEE, 815-818.

Michael Alexander Trols, Atif Mashkoor, and Alexander
Egyed. 2019. Live and Global Consistency Checking in a
Collaborative Engineering Environment. In The 34th
ACM/SIGAPP Symposium on Applied Computing (SAC
'19). ACM, 1762 — 1771.

Michael Vierhauser, Paul Griinbacher, Alexander Egyed,
Rick Rabiser, and Wolfgang Heider. 2010. Flexible and
scalable consistency checking on product line variability
models. In Proceedings of the IEEE/ACM international
conference on Automated software engineering. ACM,
63-72.

	1 Introduction
	2 The DesignSpace Engineering Cloud
	2.1 Uniform Data Representation
	2.2 Live Feedback
	2.3 Artifact Typing
	2.4 Linking
	2.5 Private Work Areas
	2.6 Collaboration Services

	3 Consistency Checking
	3.1 Basic Architecture & Runtime Functionality
	3.1.1 Data Structure
	3.1.2 Rule Evaluation

	3.2 Collaborative Enhancement
	3.2.1 Full Activity Awareness
	3.2.2 Multi-Tool Consistency Checking
	3.2.3 Team-Driven Error Handling

	4 Evaluation
	4.1 Prototype Implementations
	4.2 Experiments & Case Studies
	4.2.1 Industrial Experiment
	4.2.2 FMTC Case Study
	4.2.3 ACCM Case Study

	5 Conclusion & Future Work
	6 Acknowledgement
	References

